The Hitchhiker's Guide to Mixed Models

Teresa Del Bianco

02 October 2020

How I got to mixed models

What's in a name?

Multilevel Model

hierarchical linear models linear mixed-effect model mixed models nested data models random coefficient random-effects models random parameter models split-plot design = parameters vary at more than one level

Varying on more than 1 level: nesting

Hierarchical view

Varying on more than 1 level: varying coefficients

Varying on more than 1 level: varying coefficients

Much Ado About Nothing?

Different ways of dealing with repeated measures

- RM Anova: Separation avoiding variance under-estimation by fitting group-level regressions per each unit of repetition. Only works if N of observations is equal (because it cannot compare group-level regressions with different number of degrees of freedom)
- **GEE**: **Correlation** avoiding variance under-estimation by adding **a correlation term between observations within one group**, "relaxing" the assumption of independence. Works well with missing data but does not allow associations between sources of variance and DV (may be of interest in longitudinal studies).
- **MM**: **nesting** pulling out variance from the fixed effects by adding another kind of effect (the random) that allow individual level estimates of the coefficients

Why individual level estimates of the coefficients?

Why individual level estimates of the coefficients?

The MM: Fixed Effects (B1)

- They represent **the independent variables** (IV), that affect the dependent variable (DV) in the same way for everybody (hence, *fixed*)
- The model estimates **the effect of the IV/fixed effect** (the *coefficient*), and its precision (the *standard error*).
- The coefficient is on the same scale of the DV: a very small estimate means that the IV has a very small effect on the DV. A negative estimate means that the IV decreases the DV.
- In other kinds of models, such as binomial models, where the DV takes the values of 0/1 (binary), the coefficient does not represent the average effect of the IV on the DV, but the

The MM: Random Effects (B0i and B1i)

Random = Arbitrary

- They specify different **starting points (intercepts)** and **degrees of variations (slopes)** for each subject.
- Why is it called random: I don't know really, but I made the analogy with the *Random Access Memory* (non-sequential)
- The random effect is a number describing **the deviation from the** *fixed* **coefficient** for each random effect.
- A random effect close to 0 means that, within that nesting, the deviation from the fixed coefficient is small.

The MM: Variance-Covariance Structure

- With repeated measures, variances are not homogeneus and observations co-vary (within subject, within time-point etc.)
- The easiest Variance-Covariance Structure is 'Unstructured'
- Many different types of structure can be implemented within a mixed model (diagonal, block diagonal, compound symmetry)
 - O It introduces an assumption
 - O It should be tested

A Formula for the Working Example

- B1 = Fixed Coefficient Estimate of the IV "Days"
- B0i = Varying Intercept (by subject)
- B1i Varying Slope (of the effect of the IV "Days" by subject)

Working Example: Reaction Times In A Sleep Deprivation Study

Reaction	Days	Subject
249.5600	0	308
258.7047	1	308
250.8006	2	308
321.4398	3	308

Spaghetti Plot of reaction times across days, by subject

What are those Numbers? The Output

4 Days 6

Working Example: R Times In A Sleep Dep Study Reaction	eaction privation Days Subject	Fixed Effect	Coefficie nt Estimate	Standard De ^{Error}	DF 100 2-10	T-Value -20	P-Value	CI 2.5%	CI 97.5%
249.5600	0 308								
258.7047	1 308	Intercent	251 /0	6 82	17	36.83	<0.01	212 11	250 00
250.8006	2 308	mercept	231.40	0.62	17	50.65	\U.UI	242.44	239.90
321.4398	3 308								
Spaghetti Plot of reaction times across days, by su	ubject								
		Days	10.46	1.54	17	6.77	<0.01	8.70	12.82

What are those Numbers? The Output

Working Example: Reaction Times In A Sleep Deprivation Study

y		
Reaction	Days	Subjec
249.5600	0	308
258.7047	1	308
250.8006	2	308
321.4398	3	308

Random Effect Del B	Variance 10-20	Standard deviation	Correlation
Subject (Intercept)	612.10	24.74	
Days (Slope)	35.07	5.99	0.07
Residual Variance	654.94	25.59	

How to Report

- **1. The structure of the model** (what are you fixed effects, as well as the random effect: varying intercept and slope? Assumptions on the variance-covariance structure?)
- 2. How you calculated p-values and confidence intervals (and if the software does it for you, how is it doing it?)
- 3. The p-value is less important than the estimate and the standard error
- 4. The estimate is an unstandardised effect size
- **5.** The confidence interval is another very good indicator of whether your model does really tell something or is only hyping the p-values

Enriching the Output

- Comparisons between models
 - O Fit a base model (without your IV of interest) and compare the model fit
 - O Participant may differ on a certain covariate, but it might not improve your model fit afterall!
- Testing the Fixed Effects one against each other
 - O Anova: tests the significance of one factor while controlling for the level of other factors
 - O Linear Contrasts: run pairwise significance tests between levels of one factor
- Plotting
 - O The effects as lines
 - O Confidence Intervals
- Testing the Assumptions
 - O Normality of Residuals

Cool Stuff that you did not know your Model could do

	## \$Sub ## ## 308 ## 309	ject (Intercept) 253.6637 211.0064	Del Bian Days 19.6662617 1.8476053	ico 2-10-20	## ## ##	\$Sul	oject (Intercept) 2.2585509	Days 9.1989758
Individual Coefficients	## 310 ## 330 ## 331 ## 332 ## 333	212.4447 275.0957 273.6654 260.4447 268.2456 244.1725	5.0184295 5.6529356 7.3973743 10.1951090 10.2436499 11.5418676	Random Effects	## ## ## ##	309 310 330 331 332	-40.3987381 -38.9604090 23.6906196 22.2603126 9.0395679	-8.6196806 -5.4488565 -4.8143503 -3.0699116 -0.2721770
	## 335 ## 337 ## 349 ## 350	251.0714 286.2956 226.1949 238.3351	-0.2848792 19.0955511 11.6407181 17.0815038		## ## ## ##	333334335337	16.8405086 -7.2326151 -0.3336684 34.8904868	-0.2236361 1.0745816 -10.7521652 8.6282652

Cool Stuff that you did not know your Model could do

Y = Individual Coefficients

X = N of observations per participant

Error Bar = summated variance of the fixed and the random effects

Additional Resources

- A great book <u>https://g.co/kgs/hYqLqr</u>
- A great couple of tutorials <u>http://www.bodowinter.com/resources.html</u>

Thanks for Listening!

